Exercise 22

Solve the initial-value problem (Debnath 1994, p. 115) for the two-dimensional surface waves at the free surface of a running stream of velocity U. The problem satisfies the following equation, boundary, and initial conditions:

$$
\begin{aligned}
& \phi_{x x}+\phi_{z z}=0, \quad-\infty<x<\infty,-h \leq z \leq 0, t>0, \\
& \phi_{x}+U \phi_{x}+g \eta=-\frac{P}{\rho} \delta(x) \exp (i \omega t), \\
& \eta_{t}+U \eta_{x}-\phi_{z}=0 \\
& \phi(x, z, 0)=\eta(x, 0)=0, \quad \text { for all } x \text { and } z .
\end{aligned}
$$

[TYPO: This should be ϕ_{t} !]

Solution

In order for the first boundary condition to be dimensionally consistent, the first term must be ϕ_{t}, similar to the equation below it for η. Also, since $-h \leq z \leq 0$, we require a boundary condition at $z=-h$.

$$
\left.\frac{\partial \phi}{\partial z}\right|_{z=-h}=0
$$

Physically this condition implies that the velocity has no normal component at the bottom of the stream. The PDEs for ϕ and η are defined for $-\infty<x<\infty$, so we can apply the Fourier transform to solve them. We define the Fourier transform with respect to x here as

$$
\mathcal{F}_{x}\{\phi(x, z, t)\}=\Phi(k, z, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} \phi(x, z, t) d x
$$

which means the partial derivatives of ϕ with respect to x, z, and t transform as follows.

$$
\begin{aligned}
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial x^{n}}\right\}=(i k)^{n} \Phi(k, z, t) \\
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial z^{n}}\right\}=\frac{d^{n} \Phi}{d z^{n}} \\
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial t^{n}}\right\}=\frac{d^{n} \Phi}{d t^{n}}
\end{aligned}
$$

Take the Fourier transform of both sides of the first PDE.

$$
\mathcal{F}_{x}\left\{\phi_{x x}+\phi_{z z}\right\}=\mathcal{F}\{0\}
$$

The Fourier transform is a linear operator.

$$
\mathcal{F}_{x}\left\{\phi_{x x}\right\}+\mathcal{F}_{x}\left\{\phi_{z z}\right\}=0
$$

Transform the derivatives with the relations above.

$$
(i k)^{2} \Phi+\frac{d^{2} \Phi}{d z^{2}}=0
$$

Expand the coefficient of Φ.

$$
-k^{2} \Phi+\frac{d^{2} \Phi}{d z^{2}}=0
$$

Bring the term with Φ to the right side.

$$
\frac{d^{2} \Phi}{d z^{2}}=k^{2} \Phi
$$

We can write the solution to this ODE in terms of exponentials.

$$
\Phi(k, z, t)=A(k, t) e^{|k| z}+B(k, t) e^{-|k| z}
$$

We can use the boundary condition at $z=-h$ here to figure out one of the constants. Taking the Fourier transform with respect to x of both sides of it gives us

$$
\mathcal{F}_{x}\left\{\left.\frac{\partial \phi}{\partial z}\right|_{z=-h}\right\}=\mathcal{F}_{x}\{0\} .
$$

Transform the partial derivative.

$$
\left.\frac{d \Phi}{d z}\right|_{z=-h}=0
$$

Differentiating Φ with respect to z, we obtain

$$
\frac{d \Phi}{d z}(k, z, t)=A(k, t)|k| e^{|k| z}-B(k, t)|k| e^{-|k| z} .
$$

Using the boundary condition, we have

$$
\left.\frac{d \Phi}{d z}\right|_{z=-h}=A(k, t)|k| e^{-|k| h}-B(k, t)|k| e^{|k| h}=0 \quad \rightarrow \quad A(k, t)=B(k, t) e^{2 h|k|},
$$

so

$$
\begin{equation*}
\Phi(k, z, t)=B(k, t)\left[e^{-|k| z}+e^{(2 h+z)|k|}\right] . \tag{1}
\end{equation*}
$$

Take the Fourier transform with respect to x of the boundary conditions at $z=0$ now.

$$
\begin{aligned}
\mathcal{F}_{x}\left\{\phi_{t}+U \phi_{x}+g \eta\right\} & =\mathcal{F}_{x}\left\{-\frac{P}{\rho} \delta(x) e^{i \omega t}\right\} \\
\mathcal{F}_{x}\left\{\eta_{t}+U \eta_{x}-\phi_{z}\right\} & =\mathcal{F}_{x}\{0\}
\end{aligned}
$$

Use the linearity property.

$$
\begin{aligned}
\mathcal{F}_{x}\left\{\phi_{t}\right\}+U \mathcal{F}_{x}\left\{\phi_{x}\right\}+g \mathcal{F}_{x}\{\eta\} & =-\frac{P}{\rho} e^{i \omega t} \mathcal{F}_{x}\{\delta(x)\} \\
\mathcal{F}_{x}\left\{\eta_{t}\right\}+U \mathcal{F}_{x}\left\{\eta_{x}\right\}-\mathcal{F}_{x}\left\{\phi_{z}\right\} & =0
\end{aligned}
$$

Transform the partial derivatives.

$$
\begin{align*}
\frac{d \Phi}{d t}+U(i k) \Phi+g H & =-\frac{P}{\rho \sqrt{2 \pi}} e^{i \omega t} \tag{2}\\
\frac{d H}{d t}+U(i k) H-\frac{d \Phi}{d z} & =0 \tag{3}
\end{align*}
$$

Solve equation (2) for H.

$$
H(k, t)=-\frac{1}{g}\left(\frac{P}{\rho \sqrt{2 \pi}} e^{i \omega t}+U i k \Phi+\frac{d \Phi}{d t}\right)
$$

Take a derivative of this with respect to t.

$$
\frac{d H}{d t}=-\frac{1}{g}\left(\frac{P i \omega}{\rho \sqrt{2 \pi}} e^{i \omega t}+U i k \frac{d \Phi}{d t}+\frac{d^{2} \Phi}{d t^{2}}\right)
$$

Use equation (1) to write expressions for $d \Phi / d t$ and $d^{2} \Phi / d t^{2}$.

$$
\begin{aligned}
& \frac{d \Phi}{d t}=\frac{d B}{d t}\left[e^{-|k| z}+e^{(2 h+z)|k|}\right] \rightarrow \\
&\left.\frac{d \Phi}{d t}\right|_{z=0}=\frac{d B}{d t}\left(1+e^{2 h|k|}\right) \\
& \frac{d^{2} \Phi}{d t^{2}}=\frac{d^{2} B}{d t^{2}}\left[e^{-|k| z}+e^{(2 h+z)|k|}\right]\left.\rightarrow \quad \frac{d^{2} \Phi}{d t^{2}}\right|_{z=0}=\frac{d^{2} B}{d t^{2}}\left(1+e^{2 h|k|}\right)
\end{aligned}
$$

The equations for H and $d H / d t$ become (noting that $\Phi(k, 0, t)=B(k, t)\left(1+e^{2 h|k|}\right)$)

$$
\begin{aligned}
H(k, t) & =-\frac{1}{g}\left[\frac{P}{\rho \sqrt{2 \pi}} e^{i \omega t}+\operatorname{UikB}\left(1+e^{2 h|k|}\right)+\frac{d B}{d t}\left(1+e^{2 h|k|}\right)\right] \\
\frac{d H}{d t} & =-\frac{1}{g}\left[\frac{P i \omega}{\rho \sqrt{2 \pi}} e^{i \omega t}+U i k \frac{d B}{d t}\left(1+e^{2 h|k|}\right)+\frac{d^{2} B}{d t^{2}}\left(1+e^{2 h|k|}\right)\right]
\end{aligned}
$$

Plug these two equations into equation (3) to get an ODE for $B(k, t) . \phi_{z}$ is obtained by differentiating equation (1) with respect to z and then setting z equal to zero.

$$
\begin{aligned}
-\frac{1}{g}\left[\frac{P \varepsilon}{\rho \sqrt{2 \pi}} e^{i \omega t}\right. & \left.+U i k \frac{d B}{d t}\left(1+e^{2 h|k|}\right)+\frac{d^{2} B}{d t^{2}}\left(1+e^{2 h|k|}\right)\right] \\
& -\frac{U i k}{g}\left[\frac{P}{\rho \sqrt{2 \pi}} e^{i \omega t}+U i k B\left(1+e^{2 h|k|}\right)+\frac{d B}{d t}\left(1+e^{2 h|k|}\right)\right]-|k|\left(e^{2 h|k|}-1\right) B=0
\end{aligned}
$$

Simplifying this equation gives

$$
\frac{d^{2} B}{d t^{2}}+2 U i k \frac{d B}{d t}+\left(g|k| \tanh h|k|-k^{2} U^{2}\right) B=-\frac{i P(k U+\omega)}{\rho \sqrt{2 \pi}\left(1+e^{2 h|k|}\right)} e^{i \omega t},
$$

where the identity,

$$
\tanh h|k|=\frac{e^{2 h|k|}-1}{e^{2 h|k|}+1},
$$

was used. The solution to this second-order inhomogeneous ODE is

$$
\begin{aligned}
& B(k, t)=C_{1}(k) e^{-i t(U k+\sqrt{g|k| \tanh h|k|})}+C_{2}(k) e^{-i t(U k-\sqrt{g|k| \tanh h|k|})} \\
&+\frac{i P(k U+\omega) e^{i \omega t-h|k|}}{2 \sqrt{2 \pi} \rho\left[(k U+\omega)^{2} \cosh h|k|-g|k| \sinh h|k|\right]} .
\end{aligned}
$$

Make use of the initial conditions in order to determine $C_{1}(k)$ and $C_{2}(k)$. First take the Fourier transform of both sides of them.

$$
\begin{array}{rlrl}
\phi(x, z, 0)=0 & \rightarrow & \mathcal{F}_{x}\{\phi(x, z, 0)\} & =\mathcal{F}_{x}\{0\} \\
\Phi(k, z, 0) & =0 \\
\eta(x, 0)=0 & \rightarrow \quad \mathcal{F}_{x}\{\eta(x, 0)\} & =\mathcal{F}_{x}\{0\} \\
H(k, 0) & =0 \tag{5}
\end{array}
$$

Applying equation (4) yields

$$
\Phi(k, z, 0)=B(k, 0)\left[e^{-|k| z}+e^{(2 h+z)|k|}\right]=0 \quad \rightarrow \quad B(k, 0)=0,
$$

which means

$$
B(k, 0)=C_{1}(k)+C_{2}(k)+\frac{i P(k U+\omega) e^{-h|k|}}{2 \sqrt{2 \pi} \rho\left[(k U+\omega)^{2} \cosh h|k|-g|k| \sinh h|k|\right]}=0 .
$$

Solve this for $C_{1}(k)$.

$$
C_{1}(k)=-C_{2}(k)-\frac{i P(k U+\omega) e^{-h|k|}}{2 \sqrt{2 \pi} \rho\left[(k U+\omega)^{2} \cosh h|k|-g|k| \sinh h|k|\right]}
$$

Earlier we solved equation (2) for $H(k, t)$. This will be the equation we use to determine $C_{2}(k)$.

$$
H(k, 0)=-\frac{1}{g}\left[\frac{P}{\rho \sqrt{2 \pi}}+U i k \Phi(k, 0,0)+\frac{d \Phi}{d t}(k, 0,0)\right]=0
$$

The left side yields a very ugly expression involving $C_{2}(k)$ that can nevertheless be solved. Now that $C_{1}(k)$ and $C_{2}(k)$ are solved for, $\Phi(k, z, t)$ is known and, consequently, $H(k, t)$ is as well. The final expressions are as follows.

$$
\begin{array}{r}
\Phi(k, z, t)=\frac{P e^{-i U k t-|k|(2 h+z)}\left(1+e^{2(h+z)|k|}\right)}{4 \sqrt{2 \pi} \rho\left[(U k+\omega)^{2} \cosh h|k|-g|k| \sinh h|k|\right]} \times \\
\left\{2 i e^{h|k|}(U k+\omega)\left[e^{i t(U k+\omega)}-\cos (t \sqrt{g|k| \tanh h|k|})\right]\right. \\
\left.\quad-i \sqrt{1-e^{4 h|k|}} \sqrt{g|k|} \operatorname{sech} h|k| \sin (t \sqrt{g|k| \tanh h|k|})\right\} \\
N(k, t)=\frac{P \sqrt{|k|} e^{-i U k t} \sqrt{\tanh h|k|}}{i \rho \sqrt{g} \sqrt{2 \pi}\left[-\left(1+e^{2 h|k|}\right)(U k+\omega)^{2}+\left(-1+e^{2 h|k|}\right) g|k|\right]} \times \\
\left\{\sqrt{1-e^{4 h|k|} \sqrt{g|k|}\left[-e^{i t(U k+\omega)}+\cos (t \sqrt{g|k| \tanh h|k|})\right]}\right. \\
\left.\quad-\left(1+e^{2 h|k|}\right)(U k+\omega) \sin (t \sqrt{g|k| \tanh h|k|})\right\}
\end{array}
$$

All that's left is to take the inverse Fourier transform of Φ and H to get ϕ and η.

$$
\phi(x, z, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Phi(k, z, t) e^{i k x} d k \quad \text { and } \quad \eta(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} H(k, t) e^{i k x} d k
$$

