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Exercise 22

Solve the initial-value problem (Debnath 1994, p. 115) for the two-dimensional surface waves at
the free surface of a running stream of velocity U . The problem satisfies the following equation,
boundary, and initial conditions:

φxx + φzz = 0, −∞ < x <∞, −h ≤ z ≤ 0, t > 0,

φx + Uφx + gη =
P

ρ
δ(x) exp(iωt),

ηt + Uηx − φz = 0

}
on z = 0, t > 0,

φ(x, z, 0) = η(x, 0) = 0, for all x and z.

[TYPO: This should be φt!]

Solution

In order for the first boundary condition to be dimensionally consistent, the first term must be φt,
similar to the equation below it for η. Also, since −h ≤ z ≤ 0, we require a boundary condition at
z = −h.

∂φ

∂z

∣∣∣∣
z=−h

= 0

Physically this condition implies that the velocity has no normal component at the bottom of the
stream. The PDEs for φ and η are defined for −∞ < x <∞, so we can apply the Fourier
transform to solve them. We define the Fourier transform with respect to x here as

Fx{φ(x, z, t)} = Φ(k, z, t) =
1√
2π

ˆ ∞
−∞

e−ikxφ(x, z, t) dx,

which means the partial derivatives of φ with respect to x, z, and t transform as follows.

Fx

{
∂nφ

∂xn

}
= (ik)nΦ(k, z, t)

Fx

{
∂nφ

∂zn

}
=
dnΦ

dzn

Fx

{
∂nφ

∂tn

}
=
dnΦ

dtn

Take the Fourier transform of both sides of the first PDE.

Fx{φxx + φzz} = F{0}

The Fourier transform is a linear operator.

Fx{φxx}+ Fx{φzz} = 0

Transform the derivatives with the relations above.

(ik)2Φ +
d2Φ

dz2
= 0
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Expand the coefficient of Φ.

−k2Φ +
d2Φ

dz2
= 0

Bring the term with Φ to the right side.

d2Φ

dz2
= k2Φ

We can write the solution to this ODE in terms of exponentials.

Φ(k, z, t) = A(k, t)e|k|z +B(k, t)e−|k|z

We can use the boundary condition at z = −h here to figure out one of the constants. Taking the
Fourier transform with respect to x of both sides of it gives us

Fx

{
∂φ

∂z

∣∣∣∣
z=−h

}
= Fx{0}.

Transform the partial derivative.

dΦ

dz

∣∣∣∣
z=−h

= 0

Differentiating Φ with respect to z, we obtain

dΦ

dz
(k, z, t) = A(k, t)|k|e|k|z −B(k, t)|k|e−|k|z.

Using the boundary condition, we have

dΦ

dz

∣∣∣∣
z=−h

= A(k, t)|k|e−|k|h −B(k, t)|k|e|k|h = 0 → A(k, t) = B(k, t)e2h|k|,

so
Φ(k, z, t) = B(k, t)[e−|k|z + e(2h+z)|k|]. (1)

Take the Fourier transform with respect to x of the boundary conditions at z = 0 now.

Fx{φt + Uφx + gη} = Fx

{
−P
ρ
δ(x)eiωt

}
Fx{ηt + Uηx − φz} = Fx{0}

Use the linearity property.

Fx{φt}+ UFx{φx}+ gFx{η} = −P
ρ
eiωtFx {δ(x)}

Fx{ηt}+ UFx{ηx} − Fx{φz} = 0

Transform the partial derivatives.

dΦ

dt
+ U(ik)Φ + gH = − P

ρ
√

2π
eiωt (2)

dH

dt
+ U(ik)H − dΦ

dz
= 0 (3)
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Solve equation (2) for H.

H(k, t) = −1

g

(
P

ρ
√

2π
eiωt + UikΦ +

dΦ

dt

)
Take a derivative of this with respect to t.

dH

dt
= −1

g

(
Piω

ρ
√

2π
eiωt + Uik

dΦ

dt
+
d2Φ

dt2

)
Use equation (1) to write expressions for dΦ/dt and d2Φ/dt2.

dΦ

dt
=
dB

dt
[e−|k|z + e(2h+z)|k|] → dΦ

dt

∣∣∣∣
z=0

=
dB

dt
(1 + e2h|k|)

d2Φ

dt2
=
d2B

dt2
[e−|k|z + e(2h+z)|k|] → d2Φ

dt2

∣∣∣∣
z=0

=
d2B

dt2
(1 + e2h|k|)

The equations for H and dH/dt become (noting that Φ(k, 0, t) = B(k, t)(1 + e2h|k|))

H(k, t) = −1

g

[
P

ρ
√

2π
eiωt + UikB(1 + e2h|k|) +

dB

dt
(1 + e2h|k|)

]
dH

dt
= −1

g

[
Piω

ρ
√

2π
eiωt + Uik

dB

dt
(1 + e2h|k|) +

d2B

dt2
(1 + e2h|k|)

]
Plug these two equations into equation (3) to get an ODE for B(k, t). φz is obtained by
differentiating equation (1) with respect to z and then setting z equal to zero.

− 1

g

[
Pε

ρ
√

2π
eiωt + Uik

dB

dt
(1 + e2h|k|) +

d2B

dt2
(1 + e2h|k|)

]
− Uik

g

[
P

ρ
√

2π
eiωt + UikB(1 + e2h|k|) +

dB

dt
(1 + e2h|k|)

]
− |k|(e2h|k| − 1)B = 0

Simplifying this equation gives

d2B

dt2
+ 2Uik

dB

dt
+ (g|k| tanhh|k| − k2U2)B = − iP (kU + ω)

ρ
√

2π(1 + e2h|k|)
eiωt,

where the identity,

tanhh|k| = e2h|k| − 1

e2h|k| + 1
,

was used. The solution to this second-order inhomogeneous ODE is

B(k, t) = C1(k)e−it(Uk+
√

g|k| tanhh|k|) + C2(k)e−it(Uk−
√

g|k| tanhh|k|)

+
iP (kU + ω)eiωt−h|k|

2
√

2πρ[(kU + ω)2 coshh|k| − g|k| sinhh|k|]
.

Make use of the initial conditions in order to determine C1(k) and C2(k). First take the Fourier
transform of both sides of them.

φ(x, z, 0) = 0 → Fx{φ(x, z, 0)} = Fx{0}
Φ(k, z, 0) = 0 (4)

η(x, 0) = 0 → Fx{η(x, 0)} = Fx{0}
H(k, 0) = 0 (5)
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Applying equation (4) yields

Φ(k, z, 0) = B(k, 0)[e−|k|z + e(2h+z)|k|] = 0 → B(k, 0) = 0,

which means

B(k, 0) = C1(k) + C2(k) +
iP (kU + ω)e−h|k|

2
√

2πρ[(kU + ω)2 coshh|k| − g|k| sinhh|k|]
= 0.

Solve this for C1(k).

C1(k) = −C2(k)− iP (kU + ω)e−h|k|

2
√

2πρ[(kU + ω)2 coshh|k| − g|k| sinhh|k|]

Earlier we solved equation (2) for H(k, t). This will be the equation we use to determine C2(k).

H(k, 0) = −1

g

[
P

ρ
√

2π
+ UikΦ(k, 0, 0) +

dΦ

dt
(k, 0, 0)

]
= 0

The left side yields a very ugly expression involving C2(k) that can nevertheless be solved. Now
that C1(k) and C2(k) are solved for, Φ(k, z, t) is known and, consequently, H(k, t) is as well. The
final expressions are as follows.

Φ(k, z, t) =
Pe−iUkt−|k|(2h+z)(1 + e2(h+z)|k|)

4
√

2πρ[(Uk + ω)2 coshh|k| − g|k| sinhh|k|]
×{

2ieh|k|(Uk + ω)
[
eit(Uk+ω) − cos(t

√
g|k| tanhh|k|)

]
− i
√

1− e4h|k|
√
g|k| sechh|k| sin(t

√
g|k| tanhh|k|)

}
N(k, t) =

P
√
|k|e−iUkt

√
tanhh|k|

iρ
√
g
√

2π[−(1 + e2h|k|)(Uk + ω)2 + (−1 + e2h|k|)g|k|]
×{√

1− e4h|k|
√
g|k|

[
−eit(Uk+ω) + cos(t

√
g|k| tanhh|k|)

]
− (1 + e2h|k|)(Uk + ω) sin(t

√
g|k| tanhh|k|)

}
All that’s left is to take the inverse Fourier transform of Φ and H to get φ and η.

φ(x, z, t) =
1√
2π

ˆ ∞
−∞

Φ(k, z, t)eikx dk and η(x, t) =
1√
2π

ˆ ∞
−∞

H(k, t)eikx dk
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