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Exercise 22

Solve the initial-value problem (Debnath 1994, p. 115) for the two-dimensional surface waves at
the free surface of a running stream of velocity U. The problem satisfies the following equation,
boundary, and initial conditions:

¢x:p+¢zz:0, —o0 < T <00, —h§2§07t>0,
P

v+ Udy + gn = ——6(x) exp(iwt),

i 9=t 4 p (=) exp( )} onz=0,t>0,

e +Unz — ¢, =0

¢(z,2,0) =n(x,0) =0, forall x and z.

[TYPO: This should be ¢;!]

Solution

In order for the first boundary condition to be dimensionally consistent, the first term must be ¢y,
similar to the equation below it for 7. Also, since —h < z < 0, we require a boundary condition at

z = —h. 5
¢ _
9 =0

z=—h

Physically this condition implies that the velocity has no normal component at the bottom of the
stream. The PDEs for ¢ and 7 are defined for —oo < & < o0, so we can apply the Fourier
transform to solve them. We define the Fourier transform with respect to « here as

Fo{o(x,z,t)} = ®(k, 2,t) = \/:;7 /OO e*ikxd)(a:,z,t) dz,

which means the partial derivatives of ¢ with respect to x, z, and ¢ transform as follows.

7 {8"‘75} = (ik)"®(k, 2, 1)

ox™

e A"
o {a} = 4o

oY do
o {c‘%n} T odtn

Take the Fourier transform of both sides of the first PDE.

Fm{¢m¢ + ¢zz} = f{O}

The Fourier transform is a linear operator.

Transform the derivatives with the relations above.

, d*®
(Zk‘)2q) + w =0
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Expand the coefficient of ®.
k0 + e
dz?
Bring the term with & to the right side.

d2P
— = k0
dz?

We can write the solution to this ODE in terms of exponentials.
®(k, 2, t) = Ak, t)el** + B(k, t)eF?

We can use the boundary condition at z = —h here to figure out one of the constants. Taking the
Fourier transform with respect to x of both sides of it gives us

9¢
{5

} =700

z=—h
Transform the partial derivative.

dd

| 70

z=—h

Differentiating ® with respect to z, we obtain

do
(k2 t) = Ak, t)|k|e®= — Bk, t)|k|e .

Using the boundary condition, we have

dd

T = A(k,t)|k|e*|k|h — B(k‘,t)|k"@|k|h =0 — A(k,t) — B(k,t)e2h|k|,
Zle=—n

SO
®(k, z,t) = B(k,t)[e” ¥z 4 @h+2)Ikl] (1)

Take the Fourier transform with respect to x of the boundary conditions at z = 0 now.
Foloe +Uds + gn} = Fy {—§5($)ew}
Falne +Une — ¢} = Fu{0}
Use the linearity property.
Feln) + UFelo) + 0Fcln) =~ e 7 (5(0))

Folm} + UFp{n.} — Falg-} =0

Transform the partial derivatives.

dd P .
— k) + gH = — wwt 2
g UK+ gH = e (2)
dH . do

E+U(lkﬁ) _E_O (3)
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Solve equation (2) for H.

1( P dd
H(k,t) = — < “"t+Ul<:<I>+dt>

oV 2T
Take a derivative of this with respect to ¢.
dH L( Piw iy d® d*®
o Uik— + ——
dt <p\/ 2 + dt + dt?

Use equation (1) to write expressions for d®/dt and d*>®/dt?.

% _ %[e—\k\z @Rk % - iTB(l+€2h\k\)
65752 = 0;5[ ~lklz 4 (2R +2)Ik]) CZCZD B C(l:ltf( 1 4 e2hlkl)
The equations for H and dH/dt become (noting that ®(k,0,t) = B(k,t)(1 + €2h|k|))
H(k,t) = L Lfﬂ Wt UikB(1 + 2k 4 szl:(He%'k')}

Plug these two equations into equation (3) to get an ODE for B(k,t). ¢, is obtained by
differentiating equation (1) with respect to z and then setting z equal to zero.

1] Pe . dB o2hlk d’B
’Lw Uik— |k | 2h|k|
g Lovans  TUkG A+ e+ g (1 e
U”f P t 2h|k| B 2h)k| } 2hk|
et + UikB(1 + e 1+e — |k|(e —1)B=0
P (1 26l By o) gy )
Simplifying this equation gives
d’B iP(kU +w) o

— +2Ui PR (g|k| tanh h|k| — K*U*)B = —

dt? dt V21 (1 + e2hlkl) -

where the identity,
tanh h|k| = e —1
an o th‘k‘ + 1’

was used. The solution to this second-order inhomogeneous ODE is

B(k, t) = (k)e—it(Uk-i-\/g\k\tanhh|k:|) + CQ(k)e—it(Uk— glk| tanh h|k|)
N iP(kU + w)et=hlkl
2V 27p[(kU + w)? cosh h|k| — g|k|sinh h|k|]

Make use of the initial conditions in order to determine C;(k) and Ca(k). First take the Fourier
transform of both sides of them.

o(z,2,0) =0 — Fol{o(z,2,0)} = Fo{0}
®(k,2,0) =0 (4)

77(9570) =0 - fz{n(x>o)} :}—m{o}
H(k,0) =0 (5)
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Applying equation (4) yields
®(k,z,0) = B(k,0)[e"FI7 4 @2kl — 0 B(k,0) = 0,

which means

iP(kU + w)e Nkl

B(k,0) = Cy (k) + Ca(k) +
(k,0) = Ca(k) + Calk) 2v27p|(kU + w)? cosh hk| — gk| sinh h|k|]

Solve this for Cy (k).

B iP(kU + w)e "Ik
2V 27p[(kU 4 w)? cosh h|k| — g|k| sinh hk|]

C1(k) = —Ca(k)

Earlier we solved equation (2) for H(k,t). This will be the equation we use to determine Cs(k).

11 P
g LpV2rm
The left side yields a very ugly expression involving C(k) that can nevertheless be solved. Now

that C1(k) and Cy(k) are solved for, ®(k, z,t) is known and, consequently, H(k,t) is as well. The
final expressions are as follows.

dd
+ Uik®(k,0,0) + —(k,0,0)| =0

H(k,0) = —
(?) dt

—iUkt—|k|(2h+2) 2(h+2)|k|
Bk, 2, 1) = L (L+e )
4/ 27p[(Uk 4+ w)? cosh h|k| — g|k|sinh h|k|]

{2ieh|k|(Uk +w) {eit(m”w) — cos(ty/g|k| tanh h]k\)]
— /1 — eHhlkl\/g|k| sech h|k| sin(t g|k:]tanhh\k|)}
N(k.t) = P+/|k|e” Ukt /tanh h|k|

ipJgV2m[— (1 + bR Uk 4 w)2 + (=1 + e2hlkl) g|E|]
{\/ 1 — ethlkly/g|k| [—eit(U}Hw) + cos(ty/g|k| tanh h\k|)}

— (1 + (UK + w) sin(ty/g[k| tanh h\k|)}

All that’s left is to take the inverse Fourier transform of ® and H to get ¢ and 7.

1 o ; 1 o ;
oz, z,t) = \/%/ ®(k,z,t)e*® dk  and n(z,t) = \/ﬂ/ H (k,t)e*® dk
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